{frontiers in
PSYCHOLOGY

ORIGINAL RESEARCH ARTICLE
published: 26 October 2012
doi: 10.3389/fpsyg.2012.00434

=

Does attentional selectivity in the flanker task improve
discretely or gradually?

Ronald Hiibner * and Lisa Tobel

Fachbereich Psychologie, Universitét Konstanz, Konstanz, Germany

Edited by:
Narayanan Srinivasan, University of
Allahabad, India

Reviewed by:

Angela J. Yu, University of California,

USA
Eddy J. Davelaar, Birkbeck College,
UK

*Correspondence:

Ronald Hibner, Fachbereich
Psychologie, Universitét Konstanz,
Fach D29, D-78457 Konstanz,
Germany.

e-mail: ronald.huebner@
uni-konstanz.de

An important question is whether attentional selectivity improves discretely or continu-
ously during stimulus processing. In a recent study, Hiubner et al. (2010) found that the
discrete Dual-Stage Two-Phase (DSTP) model accounted better for flankertask data than
various continuous-improvement models. However, in a subsequent study, White et al.
(2011) introduced the continuous shrinking-spotlight (SSP) model and showed that it was
superior to the DSTP model. From this result they concluded that attentional selectivity
improves continuously rather than discretely. Because different stimuli and procedures
were used in these two studies, though, we questioned that the superiority of the SSP
model holds generally. Therefore, we fit the SSP model to Hibner et al’s data and found
that the DSTP model was again superior. A series of four experiments revealed that model
superiority depends on the response-stimulus interval. Together, our results demonstrate
that methodological details can be crucial for model selection, and that further comparisons
between the models are needed before it can be decided whether attentional selectivity

improves continuously or discretely.
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INTRODUCTION
Selective spatial attention is an important control mechanism for
goal-directed behavior. Accordingly, it has intensively been investi-
gated during the last decades. One idea of how specific information
is selected from the visual field is to assume some kind of spa-
tial attentional filtering. For instance, based on results obtained
with the spatial-cueing paradigm, some researchers proposed that
such filtering proceeds like an attentional spotlight, i.e., that visual
attention can be allocated to a certain location and that items at
that location are processed more intensively than items at other
locations (Posner, 1980; Posner et al., 1980). Further important
properties of spatial attention have also been revealed by the
flanker task (Eriksen and Eriksen, 1974), in which participants
have to categorize a target stimulus as fast and as accurately as
possible, while ignoring irrelevant flanker stimuli. The flankers are
usually congruent, i.e., associated with the same response as the
target, or incongruent, i.e., associated with the opposite response.
The degree to which the flankers can be ignored or filtered out is
assessed by the difference between the performance for congruent
and incongruent stimuli, which is called the flanker congruency
effect. Usually, responses to congruent stimuli are faster and more
reliable than responses to incongruent flankers and the size of dif-
ferences in RT and error rate (ER) are considered as measures of the
efficiency of selective attention. Results obtained with the flanker
task have led to the attentional zoom-lens metaphor, which gener-
alizes the spotlight idea by not only assuming a variable position
of the attentional filter, but also a variable size and form (Eriksen
and Schultz, 1979; Eriksen and St James, 1986).

The regularly observed flanker congruency effect clearly indi-
cates that selectivity is limited. Moreover, Gratton et al. (1988)
analyzed distributional data and found that this limit changes in

time. Usually, accuracy on incongruent trials is much higher for
slow than for fast responses, indicating that attentional selectivity
improves during the course of processing. In view of such results
it has been hypothesized that stimulus processing is unselective
in a first phase of processing, but then, after some time, enters a
second phase with relatively high selectivity (e.g., Gratton et al,,
1992). In more recent models, it has also been assumed that the
increase in selectivity is controlled by some conflict monitoring
mechanism. Accordingly, attentional selectivity is increased only
after a response conflict is detected, which also leads to an unse-
lective and a selective phase, at least for incongruent stimuli (e.g.,
Davelaar, 2008; Yu et al., 2009). Yet, as the zoom-lens metaphor
already suggests, a discrete and stage-like improvement of selec-
tivity is not the only way to account for the dynamics of selective
attention. It is also possible that selectivity increases continuously
with processing time by a gradually narrowing attentional focus
on the target item (e.g., Heitz and Engle, 2007). Because the con-
tinuous account seems plausible and is relatively easy to formalize,
it has been implemented in the frameworks of neural-networks
(e.g., Cohen et al.,, 1992; Liu et al., 2008), of Bayesian observers
(e.g., Yu et al.,, 2009), and of diffusion processes (e.g., Liu et al.,
2009).

Recently, however, the idea of a discrete and stage-like improve-
ment of selectivity has also been formalized by Hiibner et al.
(2010). Their Dual-Stage Two-Phase (DSTP) model relies on the
assumption of two discrete stages of stimulus selection, an early
stage of low selectivity and a late stage of high selectivity. The infor-
mation provided by these two stages drives response selection in a
first and second phase, respectively. Both phases are modeled by a
diffusion process (cf. Ratcliff, 1978). Such processes are basically
characterized by a drift rate reflecting the evidence available for
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FIGURE 1 | Outline of the two phases of response selection in the
DSTP model. The upper graph represents the response-selection process,
whereas the lower graph depicts the stimulus-selection process. In this
example stimulus selection (late selection) is successful and selects the
correct stimulus. Because response selection has not finished yet at that
time, the stimulus selection has the effect that the rate of evidence
accumulation for response selection increases, which defines the beginning
of Phase 2 of response selection. The slope of the arrows represents the
respective rate. The trajectories represent examples of single sample paths.

responses A and B, and two corresponding thresholds A and —B.
Hiibner et al. (2010) assumed that in the first phase of response
selection the rate is simply the sum of two component rates i,
and pq for target and flankers, respectively. If the flankers are
incompatible, then pq is negative, which reduces the overall rate.
Because the magnitudes of these component rates are modulated
by attentional weights (attentional filtering), this part of the model
represents early selection. Additionally, though, a late stimulus-
selection process runs in parallel with response selection. It is also
implemented as a diffusion process with drift rate pgs, and selects
the target or flanker depending on whether the accumulated evi-
dence first reaches threshold C or —D, respectively. If the target
is selected before a response, then the rate of response selection
increases to a value |Lrs2, which accounts for the improved accu-
racy of slower responses. It should be noted that the DSTP model
accounts for the dynamics of selectivity within a trial without the
assumption of conflict monitoring. An outline of the model with
an example process is shown in Figure 1.

Hiibner et al. (2010) compared the DSTP model to several
continuous-improvement models, including the neural-network
model of Cohen et al. (1992), which was also implemented as
a diffusion-process models (Liu et al., 2008). Accordingly, the
improvement of attentional selectivity in the alternative models
was generally realized by a continuously increasing drift rate for
response selection. However, the function of how the rate increased
with time differed between the models. Fitting the different

models to various distributional flanker-task data revealed that
the DSTP model was superior, suggesting that attentional selec-
tivity improves discretely rather than continuously. However, a
general problem is that there are an infinite number of ways of
how selectivity can increase continuously in time, so that Hiibner
et al. (2010) may simply not have found an optimal member of
this model class. Indeed, White et al. (2011) questioned that the
assumption of discrete selectivity generally explains data better
than continuous selectivity, and proposed a specific shrinking-
spotlight (SSP) model, also implemented as a diffusion process.

In the SSP model the overall rate for a given stimulus is also
computed from the weighted evidence provided by each sub-
component or item. It is assumed that all items provide the same
amount of perceptual evidence p. However, the attentional weight
for each item is determined by the proportion of the “spotlight”
that falls on the item’s location in the display. Selectivity, and con-
sequently the drift rate for incongruent stimuli, increases gradually
as the width of the target-centered spotlight shrinks over time at a
linear rate, r4, from sdg to a minimum.

White et al. (2011) applied the SSP model together with dis-
crete selection models, including a simplified version of the DSTP
model, to flanker-task data and found that their model was supe-
rior. Based on this result, they concluded that processing in the
flanker task is better described by gradual than by discrete atten-
tional narrowing, which is contrary to the conclusion of Hiibner
et al. (2010). Therefore, from our perspective, the crucial ques-
tion was whether the superiority of the SSP model to the DSTP
model holds generally. Because White et al. used a different exper-
imental method than Hiibner et al. (2010), it was possible that
the SSP model is superior to the DSTP model only under specific
conditions.

It is certainly impossible to compare the two models under
all possible methodological conditions. However, if selectivity
improves continuously, as proposed by White et al. (2011) then one
would expect that the SSP is at least also superior in accounting for
Hiibner et al.’s (2010) flanker-task data. Therefore, in a first step
we implemented the SSP model and fit it to the distributional data
from the three experiments (eight conditions) of Hiibner et al.’s
(2010) study using the same fitting procedure as in that study (for
details see also below). The obtained goodness-of-fit measures are
shown in Table 1. For comparison, not only the values for the SSP
model are listed, but also those for the DSTP model and the best
fitting continuous model from Hiibner et al. (2010). The latter
model has a non-linearly increasing rate and can be considered as
equivalent to the neural-network model of Cohen et al. (1992).

As can be seen in Table 1, with respect to the G? (Wilks likeli-
hood ratio chi-square) values, which represent a basic measure of
fit (cf. Ratcliff and Smith, 2004), the DSTP model is superior for
the data in all experiments and conditions. The table also shows
the Bayesian information criterion (BIC) model-selection statis-
tics (Schwarz, 1978), which takes the number of model parameters
into account. According to this statistic, the model with the smaller
BIC should be preferred. If we consider these values in Table 1, then
we see that the BIC for the SSP model is slightly smaller (61.0 versus
61.6) than that for the DSTP model only in the 20%-congruent
condition. In all other conditions, though, the DSTP model still
yields better results. Compared to the non-linear increase model,
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Table 1 | Fit statistics of different models for the three experiments
and corresponding conditions in Hiibner et al. (2010).

Experiment/condition Model G? df BIC
Experiment 1: DSTP 124 15 59.9
Wide Non-linear increase 26.6 13 81.2
SSP 48.5 17 82.4
Experiment 1: DSTP 15.7 15 63.2
Narrow Non-linear increase 42.3 13 103
SSP 56.2 17 90.1
Experiment 2: DSTP 7.86 15 50.3
T-position-central Non-linear increase 18.8 13 73.3
SSP 24.7 17 55.0
Experiment 2: DSTP 10.0 15 52.5
2-positions-lateral Non-linear increase 25.5 13 80.0
SSP 26.6 17 56.9
Experiment 2: DSTP 8.18 15 477
3-positions-central Non-linear increase 19.2 13 70.0
SSP 15.4 17 43.7
Experiment 2: DSTP 177 15 62.2
3-positions-lateral Non-linear increase 40.7 13 979
SSP 34.0 17 65.9
Experiment 3: DSTP 12.6 15 61.6
20%-congruent Non-linear increase 25.7 13 89.7
SSP 26.0 17 61.0
Experiment 3: DSTP 25.3 15 74.3
80 %-congruent Non-linear increase 511 13 14
SSP 60.6 17 95.6

In Experiment 1 the spacing (wide, narrow) between target and flanker was
varied, in Experiment 2 the stimulus position and spatial uncertainty, and in Exper
iment 3 the proportion of congruent versus incongruent stimuli. The values for
the DSTP model and the non-linear increase model are reproduced from Hib-
ner et al. (2010), whereas the values for the SSP model are obtained by new
fits. G?, Wilks likelihood ratio chi-square; df, degrees of freedom;, BIC, Bayesian
information criterion.

the BIC for the SSP model was always superior except for the
wide condition. Thus, the SSP model is a parsimonious model
that, in terms of BIC, is more successful than the best continuous-
improvement model considered in Hiibner et al. (2010). However,
it is still less successful compared to the DSTP model.

These comparisons show that the SSP model is not generally
superior to the DSTP model. Accordingly, the conclusion that
attentional selectivity improves continuously is no longer justi-
fied. Rather, with respect to the different models, it is obvious that
their superiority depends on methodological details. The method
applied in Hiibner et al. (2010) seems to be favorable for the DSTP
model, whereas that in White et al. (2011) is advantageous for the
SSP model.

Thus, a further aim of the present study was to investigate
which details of the applied methods are crucial for model supe-
riority. Of the differences between the studies those with respect
to stimuli and tasks were most striking. Although both studies

used a flanker task, Hiibner et al. required parity judgments on
numerals, whereas White et al.’s (2011) participants had to indi-
cate the pointing direction of arrows. Therefore, after verifying in
our first experiment that White et al.’s (2011) result was replic-
able in our lab, we combined in Experiment 2 the arrow stimuli
and the corresponding task with the procedure in Hiibner et al.
(2010). As a result, the DSTP model was now better than the SSP
model, which indicated that some other variable must be crucial
for model superiority. The experiments still differed in stimu-
lus duration, response-stimulus interval (RSI), error feedback,
and responding. Because there were striking differences in the
variance of the latencies between the experiments, we speculated
that stimulus duration might be an important factor. However,
its variation in Experiment 3 had no effect on model superior-
ity. Therefore, we next examined the effect of the RSI, because
this factor is known to affect automatic as well as controlled
process (e.g., Soetens et al., 1985). Indeed, the result of Experiment
4, combined with that of Experiment 3, shows that a relatively
long RSI leads to data that are fit better by the DSTP than by
the SSP model, whereas the opposite holds for a relatively short
RSIL

EXPERIMENT 1

In our first experiment we tried to replicate White et al.’s (2011)
results. To this end, we collected data by applying the same stim-
uli and procedure as in that study. Specifically, we used vertically
arranged arrows as stimuli and a “left” or “right” decision as task,
and also adopted the other procedural details from White et al.
(2011). If the task and procedure matter for model superiority,
then the SSP model should again fit the data better than the DSTP
model.

METHOD

Participants

Eighteen participants (mean age 24.4 years, five male) with nor-
mal or corrected-to-normal vision, participated in the study. They
were recruited at the Universitit Konstanz and were paid 8 €/h.

Apparatus and stimuli

Stimuli were presented on a 19”-monitor with a resolution of
1280 x 1024 pixels, and a personal computer (PC) served for con-
trolling stimulus presentation and response registration. The item
set was the same as in White et al. (2011) and consisted of left or
right pointing arrows (<, >). Participants were seated at a distance
of about 45 cm from the screen, so that the width and height of
the arrows subtended a visual angle of approximately 0.7°. Stimuli
were presented in white on a black background. The target arrow
always appeared at the center of the screen. Flanker arrows (two
above, and two below the target) were arranged vertically as in
White et al. (2011). The separation between the items was always
0.4°. For congruent stimuli, the flanker arrows pointed in the same
direction as the target arrow, whereas for incongruent stimuli the
flankers pointed in the opposite direction.

Procedure
Stimuli were presented at the center of the screen and remained
on the display until response. The task was to decide whether the
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target arrow pointed to the left or to the right, and to indicate
the decision by pressing corresponding keys “y” and “-~” on the
keyboard (German layout) with their index finger of their left and
right hand, respectively. Stimuli were congruent on half of the
trials and incongruent on the other half. One second after the
response, the next trial began. No error feedback was given. After
an RSI of 350 ms the next stimulus appeared.

Participants first performed a 48-trials practice block, and then
worked through 16 test blocks of 64 trials each in a 45 min session.
Outliers were controlled by eliminating the fastest and slowest
responses. Cut-offs were chosen in such a way that less than 1%
of the data were excluded (cf. Ulrich and Miller, 1994). For the
present experiment this means that responses faster than 250 ms
or slower than 1500 ms were excluded from analysis (<0.9% of
the data).

Model fitting

To examine model performance, responses-time distributions for
correct and incorrect responses in each condition (congruent,
incongruent) were constructed by quantile-averaging (0.1, 0.3, 0.5,
0.7, and 9) the data. By this procedure, the data of each condition
were sorted into six bins comprising 10, 20, 20, 20, 20, and 10%
of the data, respectively. One exception were the error responses
for congruent stimuli. Because they occurred rarely, only the 0.5
quantile was used for representing the corresponding RTs, as in
White et al. (2011), which produced only two bins (50, 50%).
Computer-simulation versions of the DSTP and the SSP model
were then fit to these distributions with the same fit procedure as
in Hitbner et al. (2010). Specifically, the PRAXIS algorithm (Brent,
1973; Gegenfurtner, 1992) was applied to find parameter values
for a given model that minimized the G? statistics (cf. Ratcliff and
Smith, 2004):

] pi
2 _ . '
G =2 E Nplln( '>,

i=1 !

In this equation ] is the number of bins, p; is the proportion of
observations in the i bin, and 7; is the proportion in this bin
predicted by the considered model. N is the number of all obser-
vations'. Because the congruent and incongruent conditions were
fit together, we had J=20 bins (six for correct responses in the
congruent condition, two for errors in the congruent condition,
six for correct responses in the incongruent condition, and six for
errors in the incongruent conditions).

Assuming symmetric thresholds (A= B, C= D), there were
seven parameters for the DSTP model, including one parameter
(ter) for representing the non-decisional time. The SSP model had
five parameters. Let /. and J; be the number of bins for the congru-
ent and incongruent condition, respectively, and M the number of
model parameters, then the degrees of freedom (df) are calculated
bydf=(J.—-1D+0Ui—1)—-M

We simulated 8 x 10° trials for each condition and fit cycle.
To prevent that the obtained parameter estimates represent a

!Because we fit group data, the average number of valid trials per person was used
as number of observation (N) for computing these values. For the present objective
this is sufficient, because these measures merely served for comparing the models.

local minimum, the fit procedure was repeated several times with
different sets of initial parameter values.

RESULTS AND DISCUSSION

Mean performance

The latencies of correct responses were analyzed by a one-factor
ANOVA for repeated measures on the factor congruency (congru-
ent, or incongruent). The analysis revealed a significant congruency
effect, F(1, 18) =126, p <0.001. Responses were faster for con-
gruent than for incongruent stimuli (Table 2). The mean ER was
7.28%. The ERs were subjected to an ANOVA of the same type
as for the RTs. It revealed a significant effect of congruency, F(1,
18) =42.2, p < 0.001, indicating that congruent stimuli produced
a smaller ER than incongruent ones (Table 2).

These results show the same pattern as those in White et al.’s
(2011) first experiment. However, the responses in the present
experiment were numerically faster (474 versus 505 ms), and the
congruency effect was smaller in RT (A38 versus A78 ms) as well
as in ER (A5.81 versus A7.6%).

Model fits
The parameters and goodness-of-fit values obtained from fit-
ting the DSTP and the SSP model to the distributional data are
also shown in Table 3. The table also shows BIC model-selection
values (Schwarz, 1978), which also represent goodness-of-fit but
additionally take the number of model parameters into account.
Accordingly, the model with the smaller BIC should be preferred.
As can be seen, although the pure goodness-of-fit (G?) was slightly
better for the DSTP model, the BIC value is in favor (i.e., smaller)
of the SSP model due to the fewer parameters of that model.
Thus, by applying the task and procedure of White etal. (2011),
and by fitting the models to the data we have to conclude that
the SSP model is indeed superior to the DSTP model, at least
under these specific conditions. The fact that the DSTP model is
superior under other experimental conditions suggests that pro-
cedural differences produced the inconclusive results with respect
to model superiority. The question now was which methodolog-
ical details were responsible for the advantage of the SSP model
in the present experiment. To answer this question, we conducted
further experiments.

EXPERIMENT 2
In this experiment we examined the role of stimulus type and task
for model superiority. The hypothesis was that data obtained with
arrow stimuli and the corresponding task might generally be better
accounted for by the SSP model. If this is the case, then this model
should also be superior to the DSTP model when arrow stimuli are
combined with the procedure of Hiibner et al. (2010). To test this
hypothesis, we used the same stimuli and task as in Experiment 1,
but applied the procedure as in Hiibner et al. Specifically, stimuli
were presented only for 165 ms, participants had to indicate their
decision by pressing a corresponding key with their index or mid-
dle finger of their right hand, respectively, errors were signaled by
a tone, and the RSI was 2000 ms. Moreover, whereas the flanking
arrows had always been arranged vertically in White et al. (2011),
we also included a condition with horizontally arranged items.

If the observed difference in fit performance between the DSTP
and the SSP model was due to the applied stimulus type and task,
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Table 2 | Mean response times and their SD for correct responses, mean response times for error responses, and mean error rates for the

different conditions in the four experiments.

Experiment and condition Mean correct RT SD correct RT Mean error rate Mean error RT
1.

Congruent 455 (62) 100 (29) 4.39 (2.57) 420 (71)
Incongruent 493 (64) 114 (29) 10.16 (5.37) 421 (58)
2. HORIZONTAL

Congruent 374 (37) 61 (21) 2.18 (1.65) 365 (93)
Incongruent 443 (47) 88 (35) 14.13 (4.33) 359 (62)
2. VERTICAL

Congruent 385 (37) 67 (28) 2.10 (1.68) 379 (70)
Incongruent 448 (46) 87 (25) 15.11 (3.87) 372 (42)
3.

Congruent 379 (32) 72 (18) 1.19 (1.18) 377 (94)
Incongruent 426 (43) 86 (14) 8.32 (5.05) 363 (47)
4.

Congruent 425 (47) 100 (31) 1.90 (1.11) 362 (58)
Incongruent 457 (51) 111 (33) 4.88 (2.17) 380 (45)

SD across participants are shown in parenthesis.

Table 3 | Parameter estimates and goodness-of-fit measures obtained by fitting the DSTP model and the SSP model to quantile-averaged
response-time distributions for the different congruent and incongruent conditions.

Parameters
DSTP
Exp./Cond. Wta el A/B nss C/D RS2 ter G? df BIC
1. 0.0874 0.0705 0.0749 0.4437 0.1129 1.9799 0.2283 58.9 " 110
2. Hori 0.1067 0.1580 0.0705 0.56308 0.1034 1.3876 0.2034 26.4 1 70.8
2. Verti 0.0756 0.1483 0.0729 0.56343 0.1047 1.4589 0.2028 31.6 n 75.9
3. 0.1154 0.1423 0.0796 0.4885 0.0955 1.7074 0.1914 79.3 1" 131
4. 0.0992 0.0570 0.0888 0.4219 0.1100 1.9426 0.1685 476 1 98.8
SSP
Exp./Cond. p A/B rq sd, ter G? df BIC
1. 0.2873 0.0540 0.0406 1.9650 0.2890 69.1 13 106
2. Hori 0.3944 0.0522 0.0234 1.9243 0.2504 53.5 13 85.2
2. Verti 0.3485 0.0528 0.0260 1.9267 0.2540 65.3 13 970
3. 0.3763 0.0527 0.0394 1.8290 0.2494 105 13 141
4. 0.3289 0.0598 0.0378 1.6645 0.2504 50.6 13 872

Hori, horizontal stimulus arrangement; Verti, vertical-stimulus arrangement; A/B, response-selection boundaries, t,,, mean non-decision time (in seconds); p, perceptual

input; sd,, spotlight width;, r,, rate of decrease in spotlight; C/D, stimulus-selection boundaries; \ss, drift rate for stimulus selection; wrs,, drift rate for response-selection

phase 2; ., drift rate from target; \.,, combined drift rate for flankers; G?, Wilks likelihood ratio chi-square; df, degrees of freedom, BIC, Bayesian information criterion.

then the SSP model should again be superior, at least for the con-
dition with vertically arranged items. However, if the difference
depended on other procedural differences between White et al.’s
(2011) and Hiibner et al.’s (2010) studies, then the DSTP model
should now be better.

METHOD
Fifteen participants (mean age 23 years, six male) with normal or
corrected-to-normal vision, participated in the study. They were

recruited at the Universitit Konstanz and were paid 8 €/h. Appara-
tus and stimuli were the same as in Experiment 1, except that there
was an additional stimulus condition with horizontally arranged
flanker items (0.4°separation). The procedure was adopted from
Hiibner et al. (2010). Each trial started with a fixation cross of
400 ms, which was followed by a blank screen for 600 ms (cue-
stimulus interval) and by a subsequent stimulus array presented
for 165ms. The pointing direction of the target arrow had to
be indicated by pressing a corresponding key with the index or
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middle finger of the right hand, respectively. One second after
the response, the next trial began (RSI=2000ms). Errors were
signaled by short tone.

After two preliminary 16-trials practice blocks for each stimu-
lus arrangement, the participants worked through 18 test blocks
of 64 trials each in a 1 h session. Blocks with horizontally arranged
items and those with vertically arranged items were presented in
alternating order. Half of the participants started with a horizon-
tal block, the other half with a vertical block. Responses faster
than 200 ms or slower than 1500 ms were excluded from analysis
(<0.3% of all data).

RESULTS AND DISCUSSION

Mean performance

Latencies of correct responses were analyzed in a two-way ANOVA
for repeated measurements on the factors arrangement (hori-
zontal, or vertical), and congruency (congruent, or incongruent).
The analysis revealed significant main effects of arrangement, F(1,
15) =7.72, p < 0.05, and of congruency, F(1,15) =105, p < 0.001.
Responses were slightly faster in the horizontal condition than in
the vertical one (409 versus 417 ms). They were also faster for con-
gruent than for incongruent stimuli (380 versus 446 ms). The RTs
for the individual conditions are listed in Table 2. The mean ER
was 8.38%. ERs were subjected to an ANOVA of the same type
as for the RTs. The analysis revealed a significant main effect of
congruency, F(1, 15) =200, p < 0.001. It indicates that congruent
stimuli produced a lower ER than incongruent ones (2.14 ver-
sus 14.6%). The ERs for the individual conditions are shown in
Table 2.

The mean performance shows that the modified procedure pro-
duced similar congruency effects as in Experiment 1. Although
responses to horizontally arranged arrows were reliably faster than
those to vertically arranged ones (see Table 2), the congruency
effects did not differ significantly between these stimulus types.

Model fits

The data of two participants had to be excluded from modeling,
because they made no errors in at least one condition. The para-
meter and goodness-of-fit values obtained from fitting the models
to the distributional data are shown in Table 3. If we consider the
different values, then we see that this time the performance of the
DSTP model was superior to that of the SSP model. This holds for
both stimulus types and clearly demonstrates that the SPP model
is not generally superior to the DSTP model. Moreover, our results
indicate that arrow stimuli and the corresponding task were not
responsible for the advantage of the SSP over the DSTP model in
White et al.’s (2011) study and in our Experiment 1. Rather, they
suggest that some procedural detail determines which model is
superior.

EXPERIMENT 3

Because Experiments 1 and 2 differed in several procedural details,
it remained open which one was responsible for the reversal of
model superiority. If we consider the mean performance between
the two experiments, then it is obvious that the responses in Exper-
iment 1 were slower and the variance of the RTs was larger (see
Table 2). A possible reason for this pattern is the difference in

stimulus duration. In Experiment 1, stimuli were displayed until
response, whereas they were presented only for 165 ms in Experi-
ment 2. The former setting may have encouraged participants to
delay their response on some trials. To test whether stimulus dura-
tion was a crucial factor for model superiority, we applied in the
present experiment the same procedure as in Experiment 2, except
that the stimulus (vertically arranged arrows) now remained visi-
ble until response. If data obtained with a long stimulus duration
are favorable for the SSP model, then this model should again be
superior to the DSTP model as in the Experiment 1.

METHOD

Sixteen participants (mean age 23.7 years, four male) with normal
or corrected-to-normal vision, participated in the study. They were
recruited at the Universitit Konstanz and were paid 8 €/h. Appa-
ratus and stimuli were the same as in the previous experiment,
except that the arrows were always arranged vertically. Also the
procedure was the same. This time, however, the stimuli remained
visible until response. After a 48-trials practice block, participants
worked through 16 test blocks in a 1.5h session. Each test block
consisted of 64 trials. Responses faster than 200 ms or slower than
1500 ms were excluded from data analysis (<0.2% of the data).

RESULTS AND DISCUSSION

Mean performance

The latencies of correct responses were analyzed in a one-factor
ANOVA for repeated measurements on the factor congruency
(congruent, or incongruent). Responses were faster for congru-
ent than for incongruent stimuli, F(1, 16) =95.9, p < 0.001 (see
Table 2). The mean ER was 4.76%. The ERs were subjected to an
ANOVA of the same type as for the RTs. A significant effect of
congruency, F(1, 16) = 47.3, p < 0.001, revealed higher ER for that
incongruent than for congruent stimuli.

Although the mean performance shows again the usual con-
gruency effects (see Table 2), compared to the vertical-stimulus
condition in Experiment 2, they were smaller in the present exper-
iment (RT: A 47 versus A 63ms; ER: A 6.42 versus A 13.0%).
Thus, it seems that the longer stimulus duration in the present
experiment reduced the response conflict. In contrast, the SD of
the RTs was similar as in the previous experiment, but smaller than
in Experiment 1.

Model fits

The DSTP and the SSP model were fit to the distributional
data with the same procedures as in the previous experiments.
The obtained parameters and goodness-of-fit values are given in
Table 3. As can be seen, the long stimulus duration impaired the
goodness-of-fit for both models. G? increased for the DSTP model
from 31.6 (vertical condition in Experiment 1) to 79.3, and for the
SSP model from 65.3 to 105, so that the DSTP model remained
superior. This also holds with respect to the BICs. Thus, stimulus
duration seems not to be critical for model superiority. Another
candidate could be the RSI, because it was unusually short in
White et al.’s (2011) study (and also in the present Experiment
1). Whether the RSI indeed plays a critical role was tested in the
next experiment.
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EXPERIMENT 4

In this experiment we tested effects of the RSI on model superior-
ity. A preliminary experiment in our lab revealed that a short RSI
of 350 ms, as used by White et al. (2011), and in our Experiment
1, is only feasible in combination with a long stimulus duration.
Therefore, we used the same procedure as in Experiment 3, except
that the RSI was now reduced from 2000 to 350 ms. This modifica-
tion had the advantage that Experiments 3 and 4 differed only with
respect to this single factor. Accordingly, it was possible to compare
the performance between these two experiments statistically.

METHOD

Sixteen participants (mean age 21.5 years, four male) with nor-
mal or corrected-to-normal vision, participated in the study. They
were recruited at the Universitit Konstanz and were paid 8 €/h.
Apparatus and stimuli were the same as in the previous experi-
ment. Also the procedure was the same as in Experiment 3, except
that the RSI was reduced to 350 ms. For this objective we had
also to abandon the fixation cross. After a 48-trials practice block,
the participants worked through 16 test blocks of 64 trials each
in a 45 min session. Responses faster than 200 ms or slower than
1500 ms were excluded from data analysis (<0.9% of the data).

RESULTS AND DISCUSSION

Mean performance

The latencies of correct responses were analyzed by a one-factor
ANOVA for repeated measurements on the factor congruency
(congruent, or incongruent). It revealed a significant effect of
congruency, F(1, 16) =58.8, p < 0.001. Responses were faster for
congruent than for incongruent stimuli (Table 2). The mean ER
was 3.39%. The ERs were subjected to an ANOVA of the same
type as for the RTs. It revealed a significant effect of congruency,
F(1, 16) =36.6, p<0.001, indicating that incongruent stimuli
produced a higher ER than congruent ones (Table 2).

Comparison with experiment 3

To assess the effects of the difference in RSI between the present
experiment and Experiment 3 (Experiment 3: long RSI of 2000 ms;
Experiment 4: short RSI of 350 ms), we subjected the mean RTs and
their SDs for correct responses, and the mean ERs to two-factor
ANOVAs with within-participant factor congruency (congruent,
or incongruent), and between-participants factor RSI (long, or
short), respectively. We report only results involving the factor RSL
A significant main effect of RSI in RT, F(1, 30) =6.35, p < 0.05,
indicates faster responses for the long than for the short RSI
(403 versus 441 ms). Moreover, there was a significant interaction
between RSI and congruency in RT, F(1, 30) =4.94, p < 0.05, as
well as in ER, F(1,30) = 13.0, p < 0.01. These interactions indicate
that congruency effects were generally stronger for the long than
for the short RSI. Finally, there was a significant main effect of RSI
in the SD, F(1, 30) =9.47, p < 0.01. The SDs were smaller for the
long than for the short RSI (86.1 versus 98.7 ms).

The comparison between Experiments 3 and this experiment
shows that a shorter RSI increased the mean of the RTs as well as
their SD (see also Table 2). It is well known that RT and RSI are
negatively correlated (e.g., Rabbitt, 1980). A further effect of the
reduced RSI was that the congruency effects were smaller, which

suggests that during a short RSI the attentional weights can be
maintained more optimally across trials. If this was the case, then
the congruency-sequence effect should also have varied with RSI.
The congruency-sequence effect is thought to reflect the phenom-
enon that the congruency effect is larger after a congruent trial
than after an incongruent one (Gratton et al., 1992).

To test whether the congruency-sequence effect was affected by
RSI, we subjected the mean RTs for correct responses and the mean
ERs (trials with an error on the previous-trial were excluded) to
three-factor ANOVAs with the within-participant factors congru-
ency (congruent, or incongruent), and previous-trial congruency
(congruent, or incongruent), and the between-participants fac-
tor RSI (long, or short). In RT it revealed a significant three-way
interaction between all factors, F(1, 30) =6.96, p < 0.05. It indi-
cates that the congruency effect was reduced to a lesser extent for
the long RSI, i.e., from 51 ms after a congruent trial to 41 ms after
an incongruent one, than for the short RSI, where the reduction
was from 44 to 21 ms. However, a further analysis revealed that
the effect was also significant for the long RSI, F(1, 15) =28.1,
p<0.001. In ER there was a significant previous-trial congru-
ency effect, F(1, 30) =22.7, p < 0.001, which, however, was not
modulated by RSI.

Model fits

The DSTP and the SSP model were fit to distributional data with
the same procedures as in the previous experiments. One par-
ticipant had to be excluded, because she made no errors in the
congruent condition. Parameter values and goodness-of-fit mea-
sures are listed in Table 3. As can be seen, the short RSI had crucial
effects on model superiority. Although the pure goodness-of-fit
(G?) was still slightly better for the DSTP model, the model-
selection criterion (BIC) was now again smaller for the SSP model.
Thus, these results suggest that a short RSI is crucial for model
selection. Its duration determines whether the SSP model or the
DSTP model is superior.

GENERAL DISCUSSION

An important question is whether spatial selective attention
improves discretely or continuously during stimulus processing
and response selection in the flanker task. If one considers the
corresponding studies, though, then the results are inconclusive.
Whereas Hiibner et al. (2010)found that the discrete DSTP model
accounts better for flanker-task data than various continuous
models, White et al. (2011)observed that their continuous SSP
model was superior. Because both studies used different tasks and
procedures, it was not possible to decide whether the superiority
of the SSP model holds generally, or only under certain conditions.
Therefore, in a first step, we also applied the SSP model to Hiibner
et al.’s data, and found that its fit was worse than that of the DSTP
model (see Table 1). This shows that the SSP model is not generally
superior, and suggested that methodological details were respon-
sible for the opposite conclusions. To investigate which details are
crucial in this respect, we conducted a series of experiments.

In our first experiment we tested whether White et al.’s (2011)
results are replicable in our lab. The results show that the SSP is
indeed superior to the DSTP model under the specific method
applied in that study. Although the pure goodness-of-fit was
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slightly better for the DSTP model, the model-selection statistics
(BIC) was in favor of the SSP model, due to the fewer parameters
of that model. This result supported our hypothesis that specific
procedural details were responsible for the incompatible results
between Hiibner et al.’s (2010) and White et al.’s (2011) study.

In our second experiment we examined the role of task and
stimuli for model superiority. To this end, we used the same stim-
uli and task as White et al. (2011), but applied the experimental
procedure of Hiibneretal. (2010). It turned out that now the DSTP
model was superior, which indicated that stimuli and task were not
crucial for the superiority of the SSP model in White et al.’s (2011)
study. To examine exactly which procedural details were essen-
tial in this respect, we ran two subsequent experiments in which
we tested the role of stimulus duration (Experiment 3), and of RSI
(Experiment 4). The results demonstrate that the RSI is the crucial
variable. The SSP model seems to be superior to the DSTP model

only if the RSI is short, as in Experiments 1 and 4, where the RSI
was 350 ms, compared to the 2000 ms in Experiments 2 and 3.
The considerations so far do not answer the question of why
the RSI actually had an effect on model superiority. Thus, to fur-
ther examine why the RSI had such an effect on model superiority,
it might be helpful to consider the distributional data in detail.
We did this exemplarily for our last two experiments, because they
differed only in RSI, and model superiority was reversed between
them. Figure 2 shows the empirical cumulative distribution func-
tions of the RTs for correct responses in the different conditions
and the corresponding model fits. As can be seen, both models fit
the data for both experiments relatively well, and differences are
hardly noticeable by visual inspection. If we consider the corre-
sponding goodness-of-fit values, i.e., to what extent the deviations
for correct responses contributed to G?, then we find that the SSP
model was superior to the DSTP model in the two experiments
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(Experiment 3: DSTP 58.8, SSP 48.5; Experiment 4: DSTP 49.7,
SSP 42.7). This superiority, though, does not hold generally. In
Experiment 1, for instance, the DSTP fit correct responses simi-
larly good or even better than the SSP model (horizontal condition:
DSTP 17.5, SSP 23.3; vertical condition: DSTP 27.3, SSP 27.3).
These considerations suggest that the main difference in model
performance between Experiments 3 and 4 was mainly present in
the error distributions, which had also been used for model fitting,
because variations in accuracy are essential for the present objec-
tive. Indeed, if we consider the contributions of error data fitting
to the goodness-of-fit statistics, then it is obvious that both mod-
els had more difficulties with fitting the data of Experiment 3, but
also that this was much more the case for the SSP model (Exper-
iment 3: DSTP 20.5, SSP 56.3; Experiment 4: DSTP—2.08, SSP
7.88). To demonstrate the meaning of these differences, we visu-
alized the error data by plotting conditional accuracy functions
(CAFs). For our objective these functions are more informative

than cumulative RT distributions of errors, because they more
directly show how accuracy (and selectivity) improved with RT
(cf. Gratton et al., 1992).

Figure 3 shows the empirical as well as the theoretical CAFs
computed from the estimated model parameters. As can be seen,
the empirical functions have the expected general form. Accuracy
is relatively low for fast responses to incongruent stimuli, but then
improves with RT and finally reaches a similarly high level as the
CAFs for congruent stimuli. If we consider the upper two panels,
which represent the data and model fits for the long RSI condi-
tion (Experiment 3), then we see why the DSTP model fits the
data better than the SSP model. The SSP model underestimates
the accuracy for very fast responses to incongruent stimuli and
predicts that it improves too quickly. In other words, the predicted
slope of the CAF for incongruent stimuli is too steep. In contrast,
the DSTP model fits the increase in accuracy for the incongruent
stimuli rather well. This shows that the SSP model does not always
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adequately fit the slope of steep CAFs. The CAFs for the short
RSI condition (Experiment 4) can be seen in the lower panels of
Figure 3. Obviously, accuracy for fast responses to incongruent
stimuli was already relatively high under this condition, indicating
a correspondingly high spatial selectivity. For these data the fit of
SSP model was similarly good as that of the DSTP model.

In a recent article, White et al. (2012) compared the perfor-
mance of their SSP model with that of two specific Bayesian
observer models (Yu et al., 2009), which also assume a continuous-
improvement of selectivity. They could show that the crucial
difference of the observer models compared to other continuous-
improvement models is not their Bayesian decision part, but the
assumed attentional mechanisms, which were based on compat-
ibility bias and spatial uncertainty. White et al. (2012) fit the
observer models to data from White et al. (2011), and also con-
sidered CAFs. The comparison revealed that the SSP model was
superior, mainly because it adequately captured the steep slopes in
the CAFs for incongruent stimuli. However, as we have seen in the
present study, predicting a steep slope might not always be appro-
priate. Accordingly, as the CAFs were less steep in the present study
for conditions with a long RSI, one might ask whether the observer
models might be superior to the SSP model in this case, or even
better than the DSTP model. If we consider the fits of the different
models to the data from Experiment 1 in White et al. (2011), then
we see that the SSP model was slightly superior to the DSTP model
(xdsp = 632 vs. XZDSTP = 656), whereas both models largely out-
performed the Bayesian observer models (Xébserver = 1553, and
4411, respectively; see White et al., 2012). Thus, given the moderate
differences in performance between the DSTP and the SSP model
in the present experiments, it is highly likely that the SSP model as
well as the DSTP model remain superior to the observer models
also for longer RSIs, as applied in the present study. In any case,
we can conclude that there is no single continuous-improvement
model, at least up to now, that is generally superior to the DSTP
model.

Given our result that the congruency effects were relatively
small in the experiments with a short RSI (Experiments 1 and
4), one could speculate that this is a necessary condition for the
superiority of the SSP model. However, if we consider the congru-
ency effects in White et al.’s (2011) study, then we see that they
were also relatively large. Thus, it seems that the size of the con-
gruency effect is not crucial. What could instead be responsible is
the fact that a short RSI produces broader RT distributions, which
is compatible with the observed greater SD of the RTs. As can be
seen in Figure 2, slow responses were delayed to a larger extent
than fast responses.

Thus, we have the result that the SSP model, which so far
represents the most successful continuous-improvement mech-
anism of spatial selectivity, is not generally superior to the discrete
improvement DSTP model, but only under specific conditions.
One of these conditions, as figured out in the present study, is
given if the RSI is rather short. In our experiments, RTs and their
SD decreased with an increasing RSI, as can be seen by consider-
ing the distributions in Figure 2. This effect can have different
origins. For instance, with a short RSI participants might not
have been well prepared for responding again shortly after an
executed response, presumably, because there is some refractory

period (Rabbitt, 1969). There is also evidence that a short RSI
delays the onset of sensory evidence accumulation (e.g., Sei-
bold et al., 2011). Furthermore, sequential effects suggest that
short RSIs generally increase automatic facilitation, whereas long
RSIs increase the impact of expectations (e.g., Soetens et al,
1985).

Obviously, the short RSI in Experiments 1 and 4 reduced the
congruency effects, suggesting that attentional adjustments could
better be maintained from one trial to the next. This would be
in line with other results showing that carry-over effects between
trials depend on the RSI. Egner et al. (2010), for instance, varied
the RSI from 500 to 5000 ms in steps of 500 ms. They found that
congruency-sequence effects decreased with an increasing RSI, and
were absent for RSIs longer than 2000 ms. Indeed, also in our data
we found such a modulation. The comparison between Experi-
ments 3 and 4 revealed that the congruency-sequence effect was
larger for the short than for the long RSI, although it was still
present for the long RSI. It should be noted, however, that in our
experiments the congruency-sequence effect does not necessarily
reflect some kind of conflict adaptation (Botvinick et al., 2001),
because with the present set of stimuli there were unequal propor-
tions of target/response repetitions in the different congruency-
sequences, which might also have contributed to the observed
sequential effects (Mayr et al., 2003).

Our results support the notion that the specific RSI in an
experiment can have various positive and/or negative effects on
performance. Choosing a long RSI is no guarantee that there are
no sequential effects. However, they might be reduced, compared
to short RSIs, at least with respect to the more automatic processes.
If we consider our model parameters (Table 3), then they suggest
that the RSI mainly affected early attentional selection, i.e., early
spatial filtering. If we compare the corresponding values between
Experiments 3 and 4 for the DSTP model, then we see that the
partial rate for the target (j1iy) was only somewhat smaller under
a short RSI (Experiment 4), whereas that for the flankers (jLq)
was substantially reduced. These values indicate that early selec-
tion was more effective under the short RSI. Similarly, for the SSP
model the initial diameter (sd,) of the spotlight was smaller in
Experiment 4, as was the perceptual evidence (p). Furthermore,
for both models the response criterion (A/B) was higher for the
short RSI.

Taken together, our study shows that, different from White
etal’s (2011) suggestion, the continuous SSP model is not gener-
ally superior to the discrete DSTP model, not even for explaining
the performance in simple flanker tasks. Rather, it offers a more
parsimonious description of flanker-task data only under specific
conditions. One of such conditions, as also shown in the present
study, is a relatively short RSI. Thus, it remains open whether selec-
tivity of spatial attention improves continuously or discretely. As
both models largely mimic each other, many comparisons under
various conditions might probably be necessary to reach a final
decision of which attentional mechanism is valid.

ACKNOWLEDGMENTS

We thank Shreyasi Mishra for collecting the data for Experiment
1 and Michael Dambacher for his valuable comments on this
manuscript.

Frontiers in Psychology | Cognitive Science

October 2012 | Volume 3 | Article 434 | 10


http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive

Hlbner and Tobel

Attentional selectivity in the flanker task

REFERENCES

Botvinick, M. M., Braver, T. S., Barch,
D. M., Carter, C. S., and Cohen, J.
D. (2001). Conflict monitoring and
cognitive control. Psychol. Rev. 108,
624-652.

Brent, R. P. (1973). Algorithms for Func-
tion Minimization Without Deriva-
tives. Englewood Cliffs, NJ: Prentice-
Hall.

Cohen, J. D., Servan-Schreiber, D., and
McClelland, J. L. (1992). A paral-
lel distributed processing approach
to automaticity. Am. J. Psychol. 105,
239-269.

Davelaar, E. J. (2008). A computational
study of conflict-monitoring at two
levels of processing: reaction time
distributional analyses and hemody-
namic responses. Brain Res. 1202,
109-119.

Egner, T, Ely, S., and Grin-
band, J. (2010). Going, going,
gone: characterizing the time-
course of congruency sequence
effects.  Front.  Psychol. 1:154.
doi:10.3389/fpsyg.2010.00154

Eriksen, B. A.,and Eriksen, C. W. (1974).
Effects of noise letters upon the iden-
tification of a target letter in a non-
search task. Percept. Psychophys. 16,
143-149.

Eriksen, C. W., and Schultz, D. W.
(1979). Information processing in
visual search: a continuous flow con-
ception and experimental results.
Percept. Psychophys. 25, 249-263.

Eriksen, C. W.,and St James, J. D. (1986).
Visual attention within and around
the field of focal attention: a zoom
lens model. Percept. Psychophys. 40,
225-240.

Gegenfurtner, K. R. (1992). PRAXIS:
Brent’s algorithm for function min-

imization. Behav. Res. Methods
Instrum. Comput. 24, 560—-564.
Gratton, G., Coles, M. G., and
Donchin, E. (1992). Optimiz-
ing the wuse of information:

strategic control of activation of
responses. J. Exp. Psychol. Gen. 121,
480-506.

Gratton, G., Coles, M. G. H., Sirevaag,
E. J., Eriksen, C. W., and Donchin,
E. (1988). Pre- and poststimulus
activation of response channels: a
psychophysiological analysis. J. Exp.
Psychol. Hum. Percept. Perform. 14,
331-344.

Heitz, R. P,, and Engle, R. W. (2007).
Focusing the spotlight: individual
differences in visual attention con-
trol. J. Exp. Psychol. Gen. 136,
217-240.

Hiibner, R., Steinhauser, M., and Lehle,
C. (2010). A dual-stage two-phase
model of selective attention. Psychol.
Rev. 117,759-784.

Liu, Y. S., Holmes, P, and Cohen, J. D.
(2008). A neural network model of
the Eriksen task: reduction, analysis,
and data fitting. Neural Comput. 20,
345-373.

Liu, Y. S, Yu, A, and Holmes,
P. (2009). Dynamical analysis of
Bayesian inference models for the
Eriksen task. Neural Comput. 21,
1520-1553.

Mayr, U, Awh, E., and Laurey, P.
(2003). Conflict adaption effects in
the absence of executive control.
Nat. Neurosci. 6, 450—452.

Posner, M. I. (1980). Orienting of atten-
tion. Q. J. Exp. Psychol. 32, 3-25.

Posner, M. I, Snyder, C. R. R,, and
Davidson, B. J. (1980). Attention
and the detection of signals. J. Exp.
Psychol. Gen. 109, 160-174.

Rabbitt, P. M. A. (1969). Psychologi-
cal refractory delay and response-
stimulus interval duration in serial,
choice responses tasks. Acta Psychol.
(Amst.) 30, 195-219.

Rabbitt, P. M. A. (1980). The effects
of S-R interval duration on ser-
ial choice reaction time: preparation
time or response monitoring time?
Ergonomics 23, 65-77.

Ratcliff, R. (1978). A theory of memory
retrieval. Psychol. Rev. 85, 59-108.
Ratcliff, R., and Smith, P. L. (2004). A
comparison of sequential sampling
models for two-choice reaction time.

Psychol. Rev. 111, 333-367.

Schwarz, G. (1978). Estimating the
dimension of a model. Ann. Stat. 6,
461-464.

Seibold, V. C., Bausenhart, K. M., Rolke,
B., and Ulrich, R. (2011). Does
temporal preparation increase the
rate of sensory information accu-
mulation? Acta Psychol. (Amst.) 137,
56—64.

Soetens, E., Boer, L. C., and Hueting, J.
E. (1985). Expectancy or automatic
facilitation? Separating sequential
effects in two-choice reaction time. J.
Exp. Psychol. Hum. Percept. Perform.
11, 598-616.

Ulrich, R., and Miller, J. (1994). Effects
of truncation on reaction time
analysis. J. Exp. Psychol. Gen. 123,
34-80.

White, C. N., Brown, S., and Ratcliff, R.
(2012). A test of Bayesian observer
models of processing in the Eriksen

flanker task. J. Exp. Psychol. Hum.
Percept. Perform. 38, 489—497.

White, C. N., Ratcliff, R., and Starns, J.
J. (2011). Diffusion models of the
flanker task: discrete versus gradual
attentional selection. Cogn. Psychol.
63,210-238.

Yu, A. ], Dayan, P., and Cohen, J.
D. (2009). Dynamics of attentional
selection under conflict: toward a
rational Bayesian account. J. Exp.
Psychol. Hum. Percept. Perform. 35,
700-717.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 20 June 2012; accepted: 02
October 2012; published online: 26 Octo-
ber 2012.
Citation: Hiibner R and Tobel L
(2012) Does attentional selectivity in
the flanker task improve discretely or
gradually? Front. Psychology 3:434. doi:
10.3389/fpsyg.2012.00434

This article was submitted to Frontiers in
Cognitive Science, a specialty of Frontiers
in Psychology.

Copyright © 2012 Hiibner and Tobel.
This is an open-access article distributed
under the terms of the Creative Com-
mons Attribution License, which per-
mits use, distribution and reproduction
in other forums, provided the original
authors and source are credited and sub-
ject to any copyright notices concerning
any third-party graphics etc.

www.frontiersin.org

October 2012 | Volume 3 | Article 434 | 11


http://dx.doi.org/10.3389/fpsyg.2010.00154
http://dx.doi.org/10.3389/fpsyg.2012.00434
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive

	Does attentional selectivity in the flanker task improve discretely or gradually?
	Introduction
	Experiment 1
	Method
	Participants
	Apparatus and stimuli
	Procedure
	Model fitting

	Results and discussion
	Mean performance
	Model fits


	Experiment 2
	Method
	Results and discussion
	Mean performance
	Model fits


	Experiment 3
	Method
	Results and discussion
	Mean performance
	Model fits


	Experiment 4
	Method
	Results and discussion
	Mean performance
	Comparison with experiment 3
	Model fits


	General Discussion
	Acknowledgments
	References




