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Abstract 
Working memory function changes across development and varies across individuals. 
The patterns of behavior and brain function that track individual differences in working 
memory during development, however, are not well understood. Here we establish 
associations between working memory, cognitive abilities, and functional MRI 
activation in data from over 4,000 9–10-year-olds enrolled in the Adolescent Brain 
Cognitive Development study, an ongoing longitudinal study in the United States. 
Behavioral analyses reveal robust relationships between working memory, short-term 
memory, language skills, and fluid intelligence. Analyses relating out-of-scanner 
working memory performance to memory-related fMRI activation in an emotional n-
back task demonstrate that frontoparietal activity in response to an explicit memory 
challenge indexes working memory ability. Furthermore, this relationship is domain-
specific, such that fMRI activation related to emotion processing during the emotional 
n-back task, inhibitory control during a stop-signal task, and reward processing during 
a monetary incentive delay task does not track memory abilities. Together these results 
inform our understanding of the emergence of individual differences in working 
memory and lay the groundwork for characterizing the ways in which they change 
across adolescence.  
 
Introduction 
Working memory—a collection of cognitive processes responsible for storing and 
manipulating information—is a foundational ability that varies widely across 
individuals. Individual differences in working memory, which appear to be stable over 
time (1–5), have pronounced real-world significance. Although the direction of causality 
is unclear, working memory explains approximately 20–30% of the variance in fluid 
intelligence in children (6) and more than 40% of this variance in adults (7). 
Furthermore, working memory function, which is related to executive and visuospatial 
attention (8, 9), short-term memory (10), and inhibitory control (11), predicts 
consequential outcomes in development, including reading and math skills (12–15). 
Despite the theoretical and practical importance of characterizing associations between 
working memory and other mental processes, much remains to be learned about the 
nature of these relationships in the developing and developed mind. 
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Working memory not only varies across individuals, but also changes across the 
lifespan. Working memory emerges in infancy and develops rapidly over the first year 
of life (16–19). It continues to improve during childhood, plateaus in mid-to-late 
adolescence (20–24), and declines after age 40–50, albeit less steeply than it changed in 
early development (25–28). Developmental gains in working memory follow 
improvements in attention shifting, attentional maintenance, and distractor suppression 
(18), whereas changes during later childhood accompany increases in domain-general 
processing speed and memory capacity (29–31) with developmental asymptotic 
performance by adolescence (32–35). Decrements in older adulthood relate to declines 
in processing speed, selective attention, and distractor suppression (36–38).  
 Importantly, converging neuroimaging evidence suggests that variation in 
frontoparietal brain systems, involved in processes including attention and cognitive 
control (39–41), accounts for both developmental change in working memory and 
individual differences in working memory in adulthood. Early work demonstrated that 
the same middle and inferior frontal regions that support working memory 
performance in adults also support performance in children (42).  This evidence led to 
theorizing that the protracted fine-tuning of prefrontal circuitry contributes to working 
memory improvements during childhood and adolescence (33, 34). Longitudinal 
studies support this prediction, with evidence that maturation in prefrontal and parietal 
volume and structural connectivity accompany working memory development (43, 44). 
Cross-sectional work suggests that increases in frontoparietal activation during working 
memory tasks are associated with age-related improvements in performance (32, 45–47). 
In the developed brain, individual differences in frontoparietal areas’ microstructure, 
function, and structural and functional connectivity track individual differences in 
working memory (48–52). A subset of developmental studies show similar associations 
between in-scanner working memory performance (a state-like measure of memory 
function) and frontoparietal activity during working memory tasks when controlling 
for age (45, 47). However, it is not yet known whether frontoparietal network function 
during memory challenges—or during cognitive task challenges more generally—
predicts individual differences in working memory during development.  
 Here we examine the emergence of behavioral and neural signatures of working 
memory in childhood. Using data from more than 4,000 9–10-year-olds participating in 
the Adolescent Brain Cognitive Development (ABCD) study (53, 54), we first establish 
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relationships between working memory and other cognitive and attentional abilities, 
including short-term memory, language and verbal skills, fluid intelligence, processing 
speed, attention, inhibitory control, and reward processing. Because the ABCD study 
will follow children longitudinally for ten years, characterizing these associations in 
childhood not only informs the structure of cognition at a single time point, but also 
facilitates understanding the ways in which this cognitive structure changes across 
adolescence. We next ask whether performance on an out-of-scanner working memory 
test is related to frontoparietal brain activity when measured (a) during a working 
memory challenge and (b) during task challenges unrelated to memory. Together our 
results provide insight into the emergence of individual differences in working 
memory, and underscore the importance of task fMRI as a "stress test" for cognition (55) 
that can reveal task-specific and task-general neural signatures of a mental process or 
behavior.  
 
Results  
Working memory performance in childhood. Individual differences in working 
memory and other cognitive and attentional processes were assessed using data from 
4398 9–10-year-olds in the Adolescent Brain Cognitive Development (ABCD) study, an 
ongoing 21-site longitudinal study of neurocognitive development (56). ABCD study 
data collection includes yearly behavioral assessments, interviews, questionnaires, and 
biosample collection as well as biennial MRI scans (54). Year-one (baseline) 
demographic, behavioral, and functional MRI data from the first half of the cohort are 
analyzed here.  

Working memory performance in the ABCD cohort, measured with the National 
Institutes of Health (NIH) Toolbox List Sorting Working Memory Test, approximated 
the normative population mean (uncorrected standard score mean = 98.2, s.d. = 11.2, 
range = 40–136; normative mean = 100, s.d. = 15). Working memory was positively 
correlated with age (rs = .13, p < 2.2×10–16) and numerically differed by sex, albeit with a 
negligible effect size (female mean = 97.8; male mean = 98.5; Welch t4339.8 = 1.94; p = .052; 
Cohen’s d = .06). Performance on all other neurocognitive measures in the ABCD task 
battery—which assess short term memory, fluid intelligence, visuospatial attention, 
reading and language skills, cognitive control, processing speed, flexible thinking, 
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learning, delay of gratification, emotion regulation, impulsivity, and reward 
processing—is visualized in Fig. 1. 

Figure 1. Kernel density estimates, or smoothed histograms, show performance in the 
full sample of 4,398 9–10-year-olds, including statistical outliers. NIH Toolbox 
performance is measured with uncorrected standard scores. Responses on the cash 
choice task—whether a child preferred to receive a smaller–sooner reward, a larger–
later reward, or couldn’t choose—are visualized with a histogram. Although “don’t 
know” responses on this task are included here, they were excluded from formal 
analysis. 

Behavioral signatures of working memory. Although a rich literature in cognitive 
psychology describes relationships between working memory and cognitive and 
attentional processes in adulthood, how these associations emerge in development is 
less well understood. Thus, a primary goal of the current work is to characterize these 
associations in childhood in order to understand how they change across development.  

To relate working memory to cognitive and attentional abilities, we computed 
pairwise Spearman correlations between performance scores on all tasks included in the 
dataset (i.e., all behavioral measures visualized in Fig. 1). Correlation coefficients are 
reported without corresponding p-values because effect sizes as small as r2 = .0009 are 
significant at p < .05 in a sample of 4398, and statistical dependence introduced by 
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family relatedness, site effects, and the inclusion of multiple performance measures per 
test precludes parametric r-to-p conversion. Furthermore, the goal of this analysis is to 
establish a pattern of behavioral relationships rather than to evaluate the statistical 
significance of particular associations. 

Across individuals, working memory was most strongly related to language 
skills measured with the NIH Toolbox Oral Reading Recognition and Picture 
Vocabulary tests (rs values = .37); memory-related performance on the emotional n-back 
task and Rey Auditory Verbal Learning Test (RAVLT); and fluid intelligence measured 
with matrix reasoning (rs = .32; Figs. 2, 3).  

Correlations between list sorting performance and performance on other 
memory tests also revealed relationships between different aspects of memory. The 
emotional n-back task, collected during functional MRI, measured performance during 
high memory load (2-back) and low memory load (0-back) task blocks. During 2-back 
blocks, children were asked to indicate when they saw a picture identical to the one 
they saw two trials back. During 0-back blocks, children were shown a target picture 
and instructed to indicate when they saw a matching image. Working memory was 
more strongly related to 2-back than to 0-back accuracy (rs = .34 vs. .27; Steiger’s z = 5.10, 
p < .001), indicating that, as predicted, working memory ability is reflected to a greater 
degree by performance on high-load vs. low-load n-back blocks. Recognition memory 
for emotional n-back stimuli (happy, fearful, and neutral face photographs and place 
photographs) was tested after fMRI data collection. Although working memory was 
less highly correlated with recognition memory than with performance on visual 
attention tasks, including the Flanker (rs = .17 vs. .23; Steiger’s z = 3.27, p = .001) and 
Little Man (rs = .17 vs. .20; Steiger’s z = 1.45, p = .15) tasks, this may reflect low overall 
memory for specific stimuli, especially face photographs, at this age (54). Finally, the 
RAVLT assessed immediate recall of a word list and list recall after a 30-minute delay. 
Working memory was numerically more closely related to immediate than to delayed 
recall on this task (rs values = .33 vs. .31; Steiger’s z = 1.62, p = .10), distinguishing 
relationships between working memory and short-term memory across shorter and 
longer delays. 
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Figure 2. Multidimensional scaling plot illustrating two-dimensional distance between 
behavioral metrics in children with no missing data (n = 2,304). Classical 
multidimensional scaling was applied to the complete-case sample to avoid 
assumptions associated with imputing missing values. Distance was calculated as the 
Euclidean distance between each pair of behavioral measures after mean-centering and 
scaling each measure across participants. NIH Toolbox measures are shown in dark 
green, other neurocognitive measures in dark gray, and neuroimaging task measures in 
light green. 
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Figure 3. Spearman correlations between performance measures in the full 4,398-child 
sample. Measures are ordered according to the strength of their relationship with 
working memory, operationalized as NIH Toolbox List Sorting Working Memory Test. 
Because the outcome of the cash choice task is binary, relationships with performance 
on this measure are equivalent to point-biserial Spearman correlation coefficients. 
 
 
Behavioral relationships are not influenced by family structure. The full 4398-child 
cohort includes 1149 related children from 3819 unique families (based on self report). 
Because relatedness affects the independence of behavioral measures and thus could 
have affected relationships between them, we replicated correlations between cognitive 
and attentional abilities in a subset of data from only one child per family 
(Supplementary Fig. 1). The pattern of behavioral relationships in this unrelated 
subsample was nearly identical to that observed in the full sample: the Spearman 
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spatial correlation between the two samples’ vectorized behavioral cross-correlation 
matrices was .998. Furthermore, excluding the 579 related children did not have a 
greater effect on the correlation between any two behavioral measures than excluding 
579 randomly selected children (non-parametric p values > Bonferroni-corrected .05; see 
Materials and methods). In other words, family structure did not have a significant impact 
on the observed pattern of behavioral relationships. 
 
Behavioral relationships are robust to age, sex, outliers, and missing data. Control 
analyses confirmed that behavioral relationships were robust to potential confounds 
(Supplementary Fig. 1). Specifically, the overall pattern of relationships was consistent 
after controlling for age and sex with partial correlation (n = 4398; partial rs = .993), 
excluding outlier values (> 2.5 standard deviations from the group mean; n = 4398; rs = 
.994), excluding children with any missing behavioral scores (n = 2304; rs = .990), 
excluding children who completed any neuroimaging task (i.e., the emotional n-back, 
stop signal, or monetary incentive delay task; see Materials and methods) on a laptop 
outside the scanner (n = 3604; rs = .996), and excluding children with neuroimaging task 
performance flags provided by the ABCD study (n = 2154; rs = .974). The overall pattern 
of relationships was replicated to a lesser degree in a conservative subsample of 
children excluding relatives, outlier values, incomplete cases, children who completed 
neuroimaging tasks outside the scanner, and children with neuroimaging task 
performance flags, and controlling for age and sex (n = 1471; partial rs = .71). Finally, 
associations between behavioral measures were similar across data collection sites 
despite differences in target sociodemographics (57). Similarity between site-specific 
behavioral cross-correlation patterns ranged from rs = .42–.86 (mean rs = .67, s.d. = .10), 
with sites with more participants showing more typical patterns (Spearman correlation 
between each site’s sample size and mean similarity to all other sites = .79,                        
p = 3.03×10–5).  
 
Behavioral relationships vary across the working memory spectrum. Do associations 
between working memory and other cognitive measures differ between children with 
stronger and weaker memory function? To assess this possibility, children were divided 
into quartiles based on their list sorting working memory performance (per-quartile n = 
1086). Overall patterns of behavioral relationships were similar across quartiles (rs 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2019. ; https://doi.org/10.1101/659409doi: bioRxiv preprint 

https://doi.org/10.1101/659409
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

values > .749). Qualitatively, however, correlations between working memory and NIH 
Toolbox test, RAVLT, and matrix reasoning performance followed a U-shaped pattern, 
such that they tended to be higher in children with the weakest and strongest working 
memory function (see Materials and methods and Supplementary Fig. 2 for quantitative 
comparisons). 
 
Neural signatures of working memory. To identify a neural signature of working 
memory—that is, a pattern of functional MRI activity associated with working memory 
function—we related out-of-scanner list sorting working memory performance to fMRI 
activation in response to a memory challenge. Memory-related fMRI activation was 
measured with a linear contrast of 2-back vs. 0-back emotional n-back task blocks (3444 
data sets available; n = 2116 after exclusion; see Materials and methods). Subject-specific 
beta weights were entered into a multiple regression model including list sorting 
performance as a predictor with FSL’s PALM software (58). Four covariates were also 
included in the model: age and sex (to account for effects present in the uncorrected list 
sorting standard scores) (56), scanner (to account for magnet-related differences 
between the 26 scanners as well as effects of participant population [e.g., family income, 
education, race and ethnicity]), and fluid intelligence (to account for non-specific effects 
of cognitive function). Nonparametric significance was assessed with 1,000 
permutations per contrast using PALM. Regression coefficients surviving a family-wise 
error-corrected p-value threshold of .05 were considered significant. 

Working memory function was significantly related to 2-back vs. 0-back (i.e., 
high vs. low memory load) activation in regions of frontal and parietal cortex including 
bilateral intraparietal sulci, dorsal premotor cortex/frontal eye fields, dorsolateral 
prefrontal cortex, anterior insula, dorsal anterior cingulate cortex extending into the 
pre-supplementary motor area, and precuneus (Fig. 4). In line with previous work 
highlighting the importance of frontoparietal regions for working memory in 
development (32, 43, 45), children with better out-of-scanner working memory 
performance showed increased activity during high relative to low memory load task 
blocks in this distributed set of regions that overlap with frontoparietal and dorsal 
attention networks (59, 60) (Fig. 5).  
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Figure 4. Relationships between fMRI activation and working memory function across 
individuals. Unthresholded t-statistics are visualized on the inflated cortical surface. 
Black outlines indicate vertices significant at family-wise error-corrected, two-tailed p < 
.05. 
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Figure 5. Overlap between neural signatures of working memory in childhood and 
canonical resting-state functional networks from Yeo et al. (2011) and Power et al. 
(2011). Black outlines indicate significant relationships between 2-back vs. 0-back 
activation and working memory function across individuals (family-wise error-
corrected, two-tailed p < .05).  
 
 
Neural signatures of working memory are domain-specific specific. Are patterns of 
fMRI activation that track individual differences in working memory driven by general 
task demands, or are they driven by working memory engagement per se? We 
performed two analyses to disentangle these alternatives. First, we examined the 
association between individual differences in working memory performance and 
activation revealed by a contrast of emotional vs. neutral face blocks in the n-back task. 
Although these emotion-related activation patterns were measured during a working 
memory task, they do not reflect a working memory challenge. Therefore, significant 
relationships between these patterns and working memory would suggest that neural 
signatures of working memory are domain-general rather than domain-specific. 
Second, we examined the relationships between individual differences in working 
memory and activation patterns reflecting distinct cognitive processes in distinct task 
contexts: inhibitory control during a stop-signal task and reward processing during a 
monetary incentive delay task. Subject-specific beta coefficient maps reflecting 
inhibitory control-related activity were computed by contrasting successful vs. 
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unsuccessful stop trials on the stop-signal task (3447 data sets available; n = 2368 after 
exclusion; see Materials and methods). Beta coefficient maps reflecting activity related to 
reward sensitivity were computed by contrasting successful vs. unsuccessful reward 
trials (i.e., volumes corresponding to positive vs. negative feedback) on the monetary 
incentive delay task (3543 data sets available; n = 2418 after exclusion). Multiple 
regression models including working memory performance, age, sex, scanner, and fluid 
intelligence were applied to predict subject-specific beta weights. 

Results revealed that working memory was not significantly associated with 
emotion-related activation during the emotional n-back task, inhibitory control-related 
activation during the stop-signal task, or reward-related activation during the monetary 
incentive delay task (Fig. 4). Although we did not compare regression coefficients 
across conditions because participant samples were overlapping but not identical, more 
participants and time points were available for the stop-signal and monetary incentive 
delay tasks than for the emotional n-back task. Thus, the presence of significant effects 
for the working memory contrast—but not the inhibitory control or reward processing 
contrasts—is not attributable to sample size or amount of data per individual, and 
results suggest that frontoparietal activity is a domain-specific rather than a domain-
general signature of working memory. 
 
Memory-related frontoparietal activity reflects in-scanner and out-of-scanner 
working memory performance. One potential explanation of the current results is that 
in-scanner emotional n-back performance—a state-like measure of working memory 
and task engagement rather than a measure of individual differences in working 
memory per se—drives the selective relationship between working memory and 2-back 
vs. 0-back frontoparietal activation. To evaluate this possibility, we replicated the 
analysis relating out-of-scanner working memory performance to 2-back vs. 0-back 
activation with age, sex, scanner, and overall n-back accuracy included in the model as 
covariates. Results revealed significant clusters in superior parietal and pre-
supplementary motor areas (Supplementary Fig. 3), demonstrating that memory-related 
activation reflects both in-scanner and out-of-scanner working memory performance.  
 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2019. ; https://doi.org/10.1101/659409doi: bioRxiv preprint 

https://doi.org/10.1101/659409
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

Discussion 
Working memory is a foundational cognitive function that changes over development 
and varies across individuals. Here we characterize relationships between working 
memory, cognitive and attentional processes, and task-related brain activity in 
childhood using behavioral and functional MRI data from the largest developmental 
neuroimaging sample to date. Behavioral analyses demonstrate that children with 
stronger working memory abilities perform better on a range of cognitive tasks, and 
revealed close relationships between working memory, performance on other memory 
tasks, language abilities, and fluid intelligence. Functional MRI analyses of emotional n-
back, stop-signal, and monetary incentive delay task data provide evidence that 
frontoparietal activation in response to an explicit memory challenge—but not in 
response to task demands more generally—is a reliable marker of working memory 
ability. Finally, a control analysis suggests that memory-related frontoparietal activity 
reflects individual differences in working memory above and beyond ongoing task 
performance.  

Positive relationships between working memory, language abilities, and fluid 
intelligence replicate previous work on the structure of cognition in children and adults 
(61–63). As expected, children with stronger working memory abilities (measured with 
the List Sorting Working Memory Test) also showed better performance on tests of 
episodic memory (Picture Sequence Memory), short-term memory (Rey Auditory 
Verbal Learning), and low- and high-load working memory (emotional n-back 0- and 2-
back conditions, respectively). Correlations between these measures in the full sample 
of 4398 children ranged from .27–.34, suggesting that they reflect both distinct and 
overlapping aspects of memory function. Somewhat surprisingly given established 
links between working memory and processing speed (64), working memory was less 
closely related to performance on the Pattern Comparison Processing Speed Test than to 
performance on every cognitive task except the stop-signal, monetary incentive delay, 
and intratemporal cash choice tasks. Although the strength of the relationship between 
working memory and processing speed (rs = .17) is numerically similar to previous 
findings with the same tasks in 8-to-12-year-olds (r = .26; REF 65), individual differences 
in working memory were more strongly related to processes including executive 
attention and cognitive flexibility than to processing speed in the current cohort. In 
addition, behavioral signatures of working memory varied as a function of working 
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memory ability, such that relationships between behavioral measures were generally 
strongest in children with low working memory performance, potentially due to factors 
such as low attention-to-task or motivation. Finally, behavioral cross-correlation 
patterns were consistent after controlling for age and sex and excluding statistical 
outliers, incomplete cases, and neuroimaging task data collected outside the scanner. 
These behavioral patterns remained unchanged when measured in a subsample of the 
data that did not include relatives (i.e., only including one child per identified family). 
Thus, although it is important to account for these factors in large datasets such as the 
ABCD sample, the current results appear robust to effects of statistical dependence and 
outliers.   

Neuroimaging results likewise align with previous work, providing evidence 
that frontoparietal activity reflects differences in working memory function during 
development (32, 45). The narrow age range of the current sample, however, allowed us 
to disentangle individual differences from developmental changes, providing novel 
evidence that frontoparietal brain function underlies variability in working memory 
both within and across individuals. Furthermore, assessing relationships between 
working memory and fMRI activity related to memory, emotion processing, inhibitory 
control, and reward processing demonstrated that frontoparietal activation is a domain-
specific rather than a task-general neural signature of working memory. Accounting for 
in-scanner emotional n-back performance, which reflects individual differences in 
working memory and attentional processes as well as transient attentional state, 
revealed relationships between out-of-scanner working memory performance and 
memory-related fMRI activation in regions of superior parietal and pre-supplementary 
motor cortex. Children with stronger working memory abilities, therefore, show 
increased frontoparietal activation during high relative to low memory load task blocks 
in part because they simply perform better on these tasks, but also because of individual 
differences in their ability to hold and manipulate information in mind.  

The current results suggest that frontoparietal activation is a domain-specific 
neural signature of working memory in that individual differences in working memory 
are selectively reflected in 2-back versus 0-back frontoparietal activity. However, 
frontoparietal activity does not only support working memory function, but is also 
related to processes including attention and cognitive control (66–70). Recent work has 
emphasized the multifunctional nature of the frontoparietal network, proposing that it 
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represents a domain-general “cognitive core” of the brain (40). Our results are not 
inconsistent with this conceptualization, but demonstrate that a high versus low 
memory load contrast reveals a frontoparietal activity signature of working memory, 
and leave open the possibility that an attention or cognitive control contrast could 
reveal a frontoparietal activity signature of attention or cognitive control. Future work 
that expands the collection of attention and control tasks and varies their cognitive 
demands will provide additional insights into the functional significance of overlapping 
and distinct patterns of frontoparietal activity across psychological tasks with 
development.  

A neural signature of working memory based on task activation data 
complements a growing body of work identifying neuromarkers of individual 
differences from functional brain connectivity. In particular, patterns of task-based and 
resting-state functional connectivity, or statistical dependence between two brain 
regions’ activity time courses, have been used to predict individual differences in 
abilities including attention, fluid intelligence, and aspects of memory (71–77). Recent 
work suggests that models based on task connectivity generally outperform those based 
on resting-state connectivity for predicting behavior, potentially because tasks engage 
circuits related to a process of interest to magnify individual differences in behaviorally 
relevant neural phenotypes, thereby improving predictions (55, 78–80). It is an open 
question, however, whether tasks selectively enhance the prediction of task-relevant 
behaviors. Here, motivated by previous work relating frontoparietal activation to 
developmental change in working memory (32, 45–47), we address this question with 
task activation rather than functional connectivity analyses. The current result—that 
frontoparietal activity indexes working memory only when working memory is explicitly 
taxed—suggests that task challenges may reveal neural signatures of task-relevant 
behaviors, and underscores the importance of multi-task or multi-condition data for 
elucidating state-specific and state-general biomarkers of behavior. 

The goal of the current work was to characterize a brain-based biomarker and 
behavioral signature of working memory in childhood not just for the sake of 
understanding these relationships at a single point in time, but also for understanding 
their trajectories across development. Because the ABCD study will follow children 
from age 9–10 to age 19–20, longitudinal work can provide new insights into 
associations between working memory, cognitive and attentional processes, and real-
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world outcomes across adolescence and young adulthood. Biennial MRI sessions—
during which participants will complete the same emotional n-back, stop-signal, and 
monetary incentive delay tasks that they completed at age nine and ten—will also 
facilitate the discovery of changing neural signatures of abilities and behavior. For 
example, will there be changes in the distinct and overlapping brain activity patterns 
associated with working memory, inhibitory control, and reward processing with age? 
Will the domain-specificity and domain-generality of these signatures vary over time? 
Are there different developmental trajectories for frontoparietal organization of 
function across these processes? A fruitful way to frame the current findings is as a 
single point along a nonlinear trajectory rather than as a summary of working memory 
function in development as a whole.  

Finally, as sample sizes in psychology and human neuroscience rapidly increase, 
it is important to note limitations of big data cohort-based approaches. First, behavioral 
and neuroimaging task batteries for these studies are determined by committee to 
address specific scientific goals. Although the resulting task sets often assess a range of 
mental processes, they may not be optimal for answering all questions. In the ABCD 
study neuroimaging battery, for example, cognitive control demands and task difficulty 
are not equated across the emotional n-back, stop-signal, and monetary incentive delay 
tasks. Thus, the 2-back vs. 0-back contrast may reflect processes such as cognitive 
control and attention that are not reflected in the three control contrasts. Future work 
relating individual differences in working memory to fMRI activity reflecting cognitive 
control, attentional engagement, and other processes in contexts matched for task 
difficulty will further inform the domain-specificity and -generality of neural signatures 
of working memory. Second, large samples are not necessarily representative samples, 
and the ABCD cohort, while geographically, demographically, and socioeconomically 
diverse, should not be considered representative of the country or world as a whole 
(57). Looking ahead, future work relating cognitive and neural measures in weighted 
samples (81) can complement existing studies of single- and multi-site datasets. Third, 
just as the ABCD participant population may not represent youth as a whole, the 
structure of neurocognition in nine- and ten-year-olds likely does not reflect that of 
children at other ages. Longitudinal analyses of the ABCD cohort can inform changes in 
brain–behavior relationships across adolescence, and data collection efforts such as the 
Human Connectome Project (HCP) Development Study (82) and HCP Aging study (83) 
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can inform these associations in younger and older individuals. Finally, because even 
small effects can reach significance when samples are large, it is helpful to distinguish 
statistical from practical significance. Here we focused on statistical significance as a 
proof-of-principle demonstration that memory-related frontoparietal activity tracks 
individual differences in working memory in childhood. Future work can evaluate 
practical or applied significance by testing whether models based on task activation 
patterns generalize to predict real-world outcomes including academic performance or 
changes in these outcomes over time.  
 Despite these limitations, the current results provide the most well powered 
characterization of relationships between working memory, cognitive and attentional 
processes, and task-based fMRI activation in development to date. Overall, they 
replicate established findings that children with stronger working memory function 
perform better on a variety of cognitive tasks, particularly those assessing other aspects 
of memory, language skills, and fluid intelligence. Furthermore, they provide evidence 
that frontoparietal network activation in response to an explicit memory challenge is a 
robust and domain-specific marker of individual differences in working memory ability 
at age nine and ten. Together these results inform understanding of the structure of 
neurocognition in childhood, and highlight the importance of evaluating brain–
behavior relationships in multiple task contexts to demarcate the specificity and 
generality of neural signatures of abilities and behavior.  
 
Materials and methods 
The Adolescent Brain Cognitive Development (ABCD) study sample. The ABCD 
study is a multi-site study following a geographically, demographically, and 
socioeconomically diverse sample of over 11,000 children in the United States from age 
9–10 to age 19–20. Launched in September 2016, the study aims to characterize cognitive 
and neural development with measures of neurocognition, physical and mental health, 
social and emotional function, and culture and environment. Exclusionary criteria 
include a diagnosis of schizophrenia, a moderate to severe autism spectrum disorder, 
an intellectual disability, or a substance use disorder at recruitment. Children with a 
persistent major neurological disorder (e.g., cerebral palsy, a brain tumor, stroke, brain 
aneurysm, brain hemorrhage, subdural hematoma), multiple sclerosis, sickle cell 
disease, or certain seizure disorders (Lennox-Gastaut syndrome, Dravet syndrome, and 
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Landau Kleffner syndrome) were also excluded. Data collection includes yearly 
behavioral assessments, interviews, questionnaires, and biosample collection as well as 
biennial MRI scans (54). Here we analyze year-one (baseline) demographic and 
behavioral data from the first half of the cohort (n = 4521; 47.5% female), collected 
across 21 sites when children were 9–10 years old and made available as part of curated 
data release 1.1 on October 15, 2018 (DOI 10.15154/1412097). Sample demographics 
including race, ethnicity, socioeconomic status, and symptoms of internalizing and 
externalizing disorders are available in REF 61. 
 
Behavioral data and exclusion criteria. To characterize associations between working 
memory, measured with the NIH Toolbox List Sorting Working Memory Test, and 
other cognitive abilities in childhood, we analyzed performance data from all available 
neurocognitive (56) and neuroimaging (54) tasks. Data from children diagnosed with 
autism spectrum disorder or epilepsy were excluded from analysis as moderate to 
severe forms of autism spectrum disorder and other seizure disorders were 
exclusionary for the study (n = 123). Data from children with attention deficit 
hyperactivity disorder, depression, bipolar disorder, anxiety, and phobias (n = 618) 
were not excluded, as these diagnoses were assessed with a single screening question 
and we aimed to characterize working memory in a heterogeneous developmental 
population. Task performance measures, described here and in Supplementary Table 1, 
were selected based on previous work including reports of ABCD baseline data (54, 56). 
 

NIH Toolbox cognition battery. The NIH Toolbox® cognition battery includes 
seven tasks measuring multiple aspects of cognition (84) (Supplementary Table 1, 
column 3). Performance is measured using uncorrected standard scores as age-
corrected scores are currently undergoing revision by the NIH Toolbox (56).  
 
The Toolbox List Sorting Working Memory Test® measures working memory by 
asking children to recall stimuli in different orders (2). Children are shown 
pictures and hear the names of animals and foods of different sizes. They are 
then asked to repeat back the items in order from smallest to largest. Children 
are first shown pictures of two animals, and then shown longer lists (up to seven) 
if they respond correctly. Children are next shown pictures of animals and foods 
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together, and are asked to repeat the animals in order of size and then the foods 
in order of size. Interleaved lists increase in length from two to seven if children 
respond accurately. Performance scores reflect the number of accurate responses.  
 
The Toolbox Picture Vocabulary Test® measures language and verbal abilities 
(85). Children hear a series of words, and are asked to choose which of four 
pictures most closely matches the meaning of the word. 
 
The Toolbox Flanker Task® was adapted from the Attention Network Task (86), a 
flanker task (87) used to measure cognitive control and attention. On each trial, 
children see a row of five arrows. The outer four arrows (distractors, or flankers) 
all point to the left or right of the screen. The middle arrow (the target) points in 
the same direction as the flankers on congruent trials, and the opposite direction 
of the flankers on incongruent trials. Children are asked to indicate whether the 
center arrow points to the left or to the right. Performance scores are based on 
speed and accuracy.  
 
The Toolbox Dimensional Change Card Sort Task® measures cognitive flexibility 
(88). On each trial, children see two objects on a screen. They are asked to match 
a third item with one of the initial two based on either color or shape. Children 
first match items based on one dimension (e.g., color), then match items based on 
the other dimension (e.g., shape), and finally match based on both shape and 
color in pseudorandom order. Performance scores are based on speed and 
accuracy. 
 
The Toolbox Pattern Comparison Processing Speed Test® measures visual 
processing speed (65, 89). Children are shown two pictures and are asked to 
indicate whether they are the same or different. Scores are based on the number 
of correct responses within a time limit. 
 
The Toolbox Picture Sequence Memory Test® measures episodic memory and 
visuospatial sequencing (90). Children are shown 15 pictures of activities or 
events and asked to reproduce the presentation order. 
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The Toolbox Oral Reading Recognition Task® measures reading abilities by 
asking children to pronounce a series of written letters and words (85). 
 
Matrix reasoning. The matrix reasoning subtest of the Wechsler Intelligence Test 
for Children-V (WISC-V) (91) measures fluid and spatial reasoning, perceptual 
organization, visual attention, and sequencing. On each trial, children are shown 
an array of visual stimuli, and are asked to select one of four stimuli that best 
completes the pattern. The task continues until a child makes three consecutive 
errors or completes 32 trials. Performance is measured by converting the number 
of total correct items to a standard score (56). 
 
Rey Auditory Verbal Learning. The Rey Auditory Verbal Learning Test 
(RAVLT) measures learning and memory. During the test, children hear a list of 
15 unrelated words five times. Each time they hear the list, they are asked to 
recall as many words as possible. After these five learning trials, children hear a 
distractor list and are again asked to recall as many words as they can. Recall of 
the initial list is assessed immediately after the distractor list and again 30 
minutes later (56). Here we measure performance as the number of correctly 
recalled words on these immediate and delayed memory assessments (i.e., 
RAVLT trials vi and vii). 
 
Intertemporal cash choice. The intertemporal cash choice task (92) assesses 
children’s delay of gratification, motivation, and impulsivity (56). Children are 
asked, “Let’s pretend a kind person wanted to give you some money. Would you 
rather have $75 in three days or $115 in 3 months?” Smaller-sooner reward 
choices were coded with a “1”, larger-later reward choices were coded with a 
“2”, and infrequent “don’t know” responses were excluded from analysis.  
 
Little Man. The Little Man task (93) measures aspects of visuospatial processing 
including mental rotation. During this task, children see a cartoon of a man 
holding a briefcase in his left or right hand appear on a computer screen. The 
man can be right side up or upside down, and can appear facing the child or 
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with his back turned. Children are asked to indicate whether the man’s briefcase 
is in his left or right hand via button press. The task includes practice trials and 
32 assessment trials. Performance is measured with efficiency (percent accuracy 
divided by mean correct-trial response time) (56).   
 
Emotional n-back. The in-scanner emotional n-back (EN-back) task engages 
processes related to memory and emotion regulation (54, 94). During the task, 
children perform 0-back (low memory load) and 2-back (high memory load) task 
blocks with four types of stimuli: happy, fearful, and neutral face photographs 
(95, 96) and place photographs. Data are collected during two approximately 5-
min functional MRI runs each with four 0-back and 2-back blocks each. Runs 
included 362 whole-brain volumes after discarded acquisitions. At the start of 
each 0-back block, children are shown a target stimulus and asked to press a 
button corresponding to “match” when they see an identical picture and a button 
corresponding to “no match” when they see a different picture. During 2-back 
blocks, children are asked to press “match” when they see a picture identical to 
the one they saw two trials back. Performance is quantified as percent accuracy 
on 0-back and 2-back blocks. 
 
Recognition memory. After scanning, memory for EN-back task stimuli is 
assessed with a recognition memory test (54, 94). During this test, children are 
presented with 48 EN-back stimuli and 48 novel stimuli (i.e., 12 old and new 
happy, fearful, and neutral face photographs and 12 old and new places), and are 
asked to rate whether each picture is “old” or “new.” Performance is assessed 
with sensitivity (d') averaged across stimulus types.  
 
Stop-signal. The in-scanner stop-signal task (97) (SST) is designed to measure 
impulsivity and impulse control (54). SST data are collected during two 
approximately 6-minute functional MRI runs (437 volumes after discarded 
acquisitions) each with 180 trials each. On each trial, children see an arrow 
pointing to the left or to the right of the screen (the go signal). They are 
instructed to indicate the direction of the arrow with a button press as quickly 
and accurately as possible, except when an upright arrow (the stop signal) 
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appears on the screen (16.67% of trials). The time between go and stop signal 
onset, the stop-signal delay, is staircased so that each child achieves 
approximately 50% accuracy on stop trials. Performance is measured with stop-
signal reaction time (SSRT), or the mean stop-signal delay subtracted from the 
mean reaction time on correct go trials. For consistency with other behavioral 
measures, SSRTs were reverse scored (multiplied by –1) so that higher scores 
correspond to better performance.  
 
Monetary incentive delay. The in-scanner monetary incentive delay task (98, 99) 
(MID) measures aspects of reward processing, including anticipation and receipt 
of rewards and losses and motivation to earn rewards and avoid losses (54). Data 
are collected during two approximately 5.5-minute, 50-trial functional MRI runs 
(403 volumes per run after discarded acquisitions). Trials begin with a cue 
indicating whether the child can win $.20 or $5, lose $.20 or $5, or earn $0. After 
1500–4000 ms, a target appears for 150–500 ms. Target timing is staircased such 
that each child achieves approximately 60% accuracy. Children must respond 
during the target presentation to achieve the indicated trial outcome. Trials are 
followed by feedback indicating the outcome. Overall task performance is 
summarized as the average amount of money earned during both runs.   

 
Relationships between behavioral measures. To establish whether associations 
between working memory and other cognitive abilities were robust to potential 
confounds such as age, sex, missing data, outliers, and statistical dependence 
introduced by family structure, data collection method, and site, we first cross-
correlated behavioral measures using data from all children meeting inclusion criteria 
(n = 4398). Although normality was not evaluated with formal tests, which reject the 
null hypothesis for near-normal distributions in large samples (100), rank correlation 
was applied because visual inspection indicated that behavioral measures were not 
normally distributed (Fig. 1). We subsequently replicated this analysis using: 

1. data from only one child per family based on self-report (n = 3819). For families 
with multiple children in the 4398-participant cohort, the child whose randomly 
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assigned NDAR Global Unique Identifier (GUID) came first in alphabetical order 
was included in this sample.  

2. data from all children meeting inclusion criteria using Spearman partial 
correlation to control for age and sex 

3. data values within 2.5 standard deviations of the group mean (see 
Supplementary Table 1) 

4. data from children with no missing values (i.e., complete cases; n = 2304)  
5. data from children who completed the emotional n-back, SST, and MID tasks 

during MRI data collection rather than on a laptop outside the scanner (n = 3604) 
6. data from children without performance flags on the emotional n-back, SST, and 

MID tasks (n = 2154). Performance flags, provided in ABCD Release 1.1, were 
assigned based on the following criteria: <60% 0-back or 2-back accuracy on the 
emotional n-back task; <150 go trials, <60% go trial accuracy, >30% incorrect go 
trial percentage, >30% late go trial percentage, >30% “no response” go trials, <30 
stop trials, or <20% or >80% stop trial accuracy on the SST; <3 positive and 
negative feedback events for large reward, small reward, large loss, small loss, or 
no stakes trials on the MID task.  

7. data from a conservative subsample excluding outlier values, incomplete cases, 
children with who completed neuroimaging tasks outside of the scanner, 
children with neuroimaging task performance flags, and relatives, and 
controlling for age and sex with partial correlation 

8. data from each of the 20 data collection sites with more than 100 participants 
separately (n = 108–417; mean n = 218.15; s.d. = 86.86; 21st site with 35 children 
excluded) 
Due to the frequency of missing data, relationships between behavioral measures 

were evaluated with pairwise correlations rather than with data reduction techniques 
such as principal component analysis (PCA), which do not typically allow for missing 
data. 47.61% of children were missing at least one performance measure, and 
neuroimaging task performance data were missing in 27.95% of the sample on average 
(Supplementary Table 1; although note that recovery of missing data is ongoing). 
Although Bayesian probabilistic PCA can account for missing data as well as the 
nesting of participants in families and data collection sites (61), this approach assumes 
that missing data occur randomly, independent of other sample features (101). This 
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assumption is violated in the current sample, as, for example, children with better 
working memory function are less likely to be missing other behavioral measures 
(Spearman correlation between list sorting performance and number of missing 
performance measures = –0.06, p = 6.39×10–5). 
 
Effects of family structure on behavioral relationships. Given the importance of 
accounting for family structure in the ABCD sample, we characterized effects of 
relatedness on behavioral relationships with an additional analysis. First, we computed 
the absolute difference between all 136 pairwise behavioral correlations in the full 
sample (n = 4398) and the unrelated subsample (n = 3819 after excluding 579 related 
children). Next, we randomly excluded 579 children from the full sample, re-calculated 
pairwise behavioral relationships, and recorded the difference between the full-sample 
correlations and these random subsample correlations. We repeated this process 1,000 
times to generate a null distribution of correlation coefficient differences for each pair of 
behavioral measures. Non-parametric p-values were generated by comparing each true 
correlation difference, |r(i,j)full sample – r(i,j)unrelated subsample|, to its corresponding null 
distribution. We elected to take this conservative sub-sampling approach rather than to 
control for family relatedness with linear mixed models given the complexity of 
possible relationships (e.g., monozygotic and dizygotic twins, full siblings, half siblings, 
cousins, etc.) and the fact that relatedness may be inaccurately captured with self-report 
measures. 
 Using the subsampling approach, we found that 133 of the 136 pairwise 
behavioral relationships did not differ between the full sample and the unrelated 
subsample more than they differed between the full sample and the random 
subsamples (uncorrected non-parametric p value range = .056 – .99). Excluding relatives 
had a larger effect (uncorrected p < .05) than excluding random participants on three 
correlations: mean monetary incentive delay (MID) earnings vs. emotional n-back 
recognition memory d' (p = .011), 2-back accuracy vs. NIH Toolbox Picture Vocabulary 
(p = .028), and 2-back accuracy vs. NIH Toolbox Picture Vocabulary (p = .033). None of 
these relationships, however, survive Bonferroni correction for 136 comparisons (p = 
.05/136 = 3.68×10–4). Thus, excluding family members from the sample did not 
disproportionately affect pairwise behavioral relationships. 
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Behavioral relationships across the working memory spectrum. Working memory 
may be differentially associated with other cognitive abilities in children with better and 
worse working memory function. To assess this possibility, we recomputed behavioral 
relationships in each quartile (defined using list sorting performance) of the 4398-child 
sample and measured the similarity of patterns of behavioral relationships with spatial 
correlation between all pairs of quartiles. Quartile-specific patterns are visualized in 
Supplementary Fig. 2. 

We next compared relationships between working memory and other abilities 
across all pairs of quartiles. This analysis revealed significantly stronger relationships 
between working memory and picture sequence memory, Rey Auditory Verbal 
Learning (RAVLT) immediate and delayed recall, and matrix reasoning in the lowest 
(i.e., first) quartile than the third quartile (z values > 3.95; p < 7.90×10–5). The 
relationship between working memory and RAVLT delayed recall was also stronger in 
the first than second quartile (z = 3.53, p = 4.10×10–4). Correlations between working 
memory and these other memory measures (picture sequence memory and RAVLT 
immediate and delayed recall) did not continue to decrease in children with the 
strongest working memory function, but rather were significantly stronger in the fourth 
than third quartile (z values > 4.39; p < 1.13×10–5). Finally, the correlation between 
working memory and cash choice task selection was higher in the third than first 
quartile (z = 3.77, p = 1.66×10–4). No other pairwise comparisons reached statistical 
significance. 
 
Neuroimaging data collection. ABCD scan sessions included a localizer and acquisition 
of a high-resolution anatomical scan, two runs of resting state fMRI, diffusion weighted 
images, 3D T2-weighted spin echo images, two more runs of resting state fMRI, and 
task-based fMRI. (Sites with Siemens scanners used Framewise Integrated Real-time 
MRI Monitoring (102) [FIRMM] to monitor children’s head motion during data 
collection. Scan operators at these sites may have stopped resting-state data collection 
after three runs if 12.5 minutes of low-motion resting-state data had been collected.) 
Image acquisition order was fixed, but fMRI task order was randomized across 
participants (54). Data were collected on Siemens Prisma, Phillips and GE 750 3T 
scanners, with detailed acquisition parameters reported in previous work (54, 103). 
Functional images were collected using a multiband gradient EPI sequence with the 
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following parameters: TR = 800 ms, TE = 30 ms, flip angle = 52°, 60 slices acquired in 
the axial plane, voxel size = 2.4 mm3, multiband slice acceleration factor = 6.  
 
Image processing. Task-based data were processed by the ABCD study Data Analysis 
and Informatics Center (DAIC) using approaches described in detail in REF 103. 
Preprocessing steps included motion correction with 3dvolreg in AFNI, B0-distortion 
(i.e., field-map) correction, gradient nonlinearity distortion correction, and resampling 
scans into alignment with cubic interpolation using a mid-session scan as the reference. 
Registration between T2-weighted spin echo scans, field maps, and T1-weighted 
structural images was performed using mutual information. Functional images were 
aligned to T1-weighted images using rigid-body transformation (103). 

After preprocessing, the equivalent of 16 volumes was removed from the start of 
each run. For Siemens and Philips scanners, 8 volumes were removed because the first 8 
volumes were used as the multiband reference scans. For GE scanners running DV25 
software (nearly all GE-scanner datasets included in ABCD Data Release 1.1), 5 volumes 
were removed because the first 12 volumes were used as the multiband reference. The 
images were then combined into a single volume and saved as the initial TR (leaving a 
total of 5 frames to be discarded). For GE scanners running DV26 software, 16 volumes 
were removed. 

Voxel-wise time series data were next normalized with run. Task-related activity 
estimates were generated for each child using general linear models (GLMs) with 
3dDeconvolve in AFNI (103). GLMs included nuisance regressors accounting for 
baseline and quadratic trends as well as motion estimates and their derivatives 
temporally filtered to attenuate .31–.43 Hz signals related to respiration (104). Volumes 
with framewise displacement values >.9 mm were censored (105).  

In addition to fixation, the emotional n-back task GLM included predictors for 
happy, fearful, and neutral face as well as place stimuli in the 0-back and 2-back 
conditions. Task bocks (approximately 24 s) were modeled as square waves convolved 
with a two-parameter gamma basis function (103). The stop-signal task model included 
predictors for correct and incorrect stop and go trials, modeled as instantaneous. The 
monetary incentive delay model included small and large reward and loss cues and 
feedback and no stakes cues, modeled as instantaneous (103). Linear contrasts of 
interest for each task are described in the Results. GLM beta coefficients for cortical gray 
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matter voxels were sampled into surface space. (This step differs from the processing 
pipeline described in REF 103, in which preprocessed data were sampled onto the 
cortical surface, but does not affect the beta values.)  
 
Neuroimaging data exclusion. Neuroimaging data from children with poor structural 
scan quality, determined with curated data release 1.1 sheet freesqc01.txt variable 
fsqc_qc, were excluded from analysis. For each task contrast, participants with fewer 
than 550 degrees of freedom in preprocessed, concatenated fMRI time series, missing 
grayordinate (i.e., gray-matter vertex or voxel) values, and/or or extreme values (>3 
standard deviations from the group mean) for the mean or standard deviations of beta 
weights over all grayordinates were also excluded. All fMRI analyses were performed 
using data from only one child per family to avoid confounds introduced by family 
structure. We elected to take this conservative approach rather than attempting to 
control for family structure with multi-level block permutation (106) because 
relatedness was determined with self-report rather than with genetic testing, the gold 
standard.  
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